Vestibular signals in primate thalamus: properties and origins.
نویسندگان
چکیده
Vestibular activation is found in diverse cortical areas. To characterize the pathways and types of signals supplied to cortex, we recorded responses to rotational and/or translational stimuli in the macaque thalamus. Few cells responded to rotation alone, with most showing convergence between semicircular canal and otolith signals. During sinusoidal rotation, thalamic responses lead head velocity by approximately 30 degrees on average at frequencies between 0.01-4 Hz. During translation, neurons encoded combinations of linear acceleration and velocity. In general, thalamic responses were similar to those recorded in the vestibular and cerebellar nuclei using identical testing paradigms, but differed from those of vestibular afferents. Thalamic responses represented a biased continuum: most cells more strongly encoded translation and fewer cells modulated primarily in response to net gravitoinertial acceleration. Responsive neurons were scattered within a large area that included regions of the ventral posterior and ventral lateral nuclei, and so were not restricted to the known vestibular nuclei projection zones. To determine the origins of these responses, a retrograde tracer was injected into a dorsolateral thalamic site where rotation/translation-sensitive cells were encountered. This injection labeled neurons in the rostral contralateral anterior interposed and fastigial nuclei, but did not label cells within the vestibular nuclei. Examination of thalamic terminations after tracer injections into the cerebellar and vestibular nuclei indicated that most vestibular responsive units fall within the thalamic terminal zones of these nuclei. Thus, vestibular signals, which are supplied to the thalamus from both vestibular and cerebellar nuclei, are positioned for distribution to widespread cortical areas.
منابع مشابه
Spatiotemporal properties of eye position signals in the primate central thalamus.
Although both sensory and motor signals in multiple cortical areas are modulated by eye position, the origin of eye position signals for cortical neurons remains uncertain. One likely source is the central thalamus, which contains neurons sensitive to eye position. Because the central thalamus receives inputs from the brainstem, these neurons may transmit eye position signals arising from the n...
متن کاملSpatiotemporal properties of vestibular responses in area MSTd.
Recent studies have shown that many neurons in the primate dorsal medial superior temporal area (MSTd) show spatial tuning during inertial motion and that these responses are vestibular in origin. Given their well-studied role in processing visual self-motion cues (i.e., optic flow), these neurons may be involved in the integration of visual and vestibular signals to facilitate robust perceptio...
متن کاملVestibular Interactions in the Thalamus
It has long been known that the vast majority of all information en route to the cerebral cortex must first pass through the thalamus. The long held view that the thalamus serves as a simple hi fidelity relay station for sensory information to the cortex, however, has over recent years been dispelled. Indeed, multiple projections from the vestibular nuclei to thalamic nuclei (including the vent...
متن کاملResponses of ventral posterior thalamus neurons to three-dimensional vestibular and optic flow stimulation.
Multisensory neurons tuned to both vestibular and visual motion (optic flow) signals are found in several cortical areas in the dorsal visual stream. Here we examine whether such convergence occurs subcortically in the macaque thalamus. We searched the ventral posterior nuclei, including the anterior pulvinar, as well as the ventro-lateral and ventral posterior lateral nuclei, areas that receiv...
متن کاملHow vestibular neurons solve the tilt/translation ambiguity. Comparison of brainstem, cerebellum, and thalamus.
The peripheral vestibular system is faced by a sensory ambiguity, where primary otolith afferents respond identically to translational (inertial) accelerations and changes in head orientation relative to gravity. Under certain conditions, this sensory ambiguity can be resolved using extra-otolith cues, including semicircular canal signals. Here we review and summarize how neurons in the vestibu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 27 50 شماره
صفحات -
تاریخ انتشار 2007